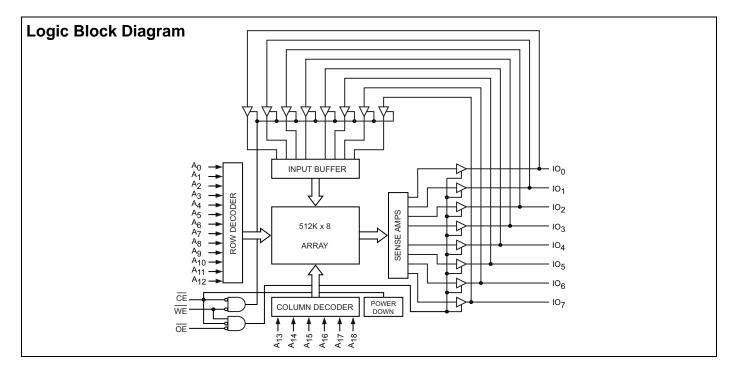


CY62148ESL MoBL[®]

4-Mbit (512K x 8) Static RAM

Features

- Very high speed: 55 ns
- Wide voltage range: 2.2V to 3.6V and 4.5V to 5.5V
- Ultra low standby power
 Typical standby current: 1 μA
 Maximum standby current: 7 μA
- Ultra low active power
 Typical active current: 2 mA at f = 1 MHz
- Easy memory expansion with CE and OE features
- Automatic power down when deselected
- CMOS for optimum speed and power
- Available in Pb-free 32-pin STSOP package


Functional Description

The CY62148ESL is a high performance CMOS static RAM organized as 512K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected (CE HIGH). The eight input and output pins (IO₀ through IO₇) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

<u>To write</u> to the device, take Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight IO pins (IO₀ through IO₇) is then written into the location specified on the address pins (A₀ through A₁₈).

To read <u>from</u> the device, take Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the IO pins.

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised January 21, 2009

Pin Configuration

Figure 1. 32-Pin STSOP (Top View)

Product Portfolio

					F	Power Di	ssipation	า	
Product	roduct Range V _{cc}	V _{CC} Range (V) ^[1]	Speed	Operating I _{CC} , (mA)			Standby, I _{SB2}		
Fioduct	Kange		(ns)	f = 1 MHz		f = 1 MHz f = f _{max}		(μÅ)	
				Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max
CY62148ESL	Industrial	2.2V to 3.6V and 4.5V to 5.5V	55	2	2.5	15	20	1	7

Notes

1. Data sheet specifications are not guaranteed for V_{CC} in the range of 3.6V to 4.5V. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	55°C to +125°C
Supply Voltage to Ground Potential	–0.5V to 6.0V
DC Voltage Applied to Outputs in High-Z State ^[3, 4]	–0.5V to 6.0V
DC Input Voltage ^[3, 4]	–0.5V to 6.0V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (MIL-STD-883, Method 3015)	> 2001V
Latch Up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[5]
CY62148ESL	Industrial	-40°C to +85°C	2.2V to 3.6V, and 4.5V to 5.5V

Electrical Characteristics

Over the Operating Range

				55 ns			
Parameter	Description	Test Co	onditions	Min	Typ ^[2]	Max	Unit
V _{OH}	Output HIGH Voltage	2.2 <u><</u> V _{CC} ≤ 2.7	I _{OH} = -0.1 mA	2.0			V
		2.7 <u><</u> V _{CC} ≤ 3.6	I _{OH} = -1.0 mA	2.4			
		4.5 <u><</u> V _{CC} ≤ 5.5	I _{OH} = -1.0 mA	2.4			
V _{OL}	Output LOW Voltage	2.2 <u><</u> V _{CC} ≤ 2.7	I _{OL} = 0.1 mA			0.4	V
		2.7 <u><</u> V _{CC} ≤ 3.6	I _{OL} = 2.1 mA			0.4	
		4.5 <u><</u> V _{CC} ≤ 5.5	I _{OL} = 2.1 mA			0.4	
V _{IH}	Input HIGH Voltage	2.2 <u><</u> V _{CC} <u><</u> 2.7		1.8		V _{CC} +0.3	V
		$2.7 \le V_{CC} \le 3.6$		2.2		V _{CC} +0.3	
		$4.5 \le V_{CC} \le 5.5$		2.2		V _{CC} + 0.5	
V _{IL} ^[6]	Input LOW Voltage	$2.2 \le V_{CC} \le 2.7$		-0.3		0.4	V
		2.7 ≤ V _{CC} ≤ 3.6		-0.3		0.6	
		$4.5 \le V_{CC} \le 5.5$		-0.5		0.6	
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output D	isabled	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		15	20	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA, CMOS levels		2	2.5	
I _{SB1}	Automatic CE Power Down Current — CMOS Inputs				1	7	μA
I _{SB2}	Automatic CE Power Down Current — CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.2V, V_{IN} \ge V_{CC}$ f = 0, V _{CC} = V _{CC(max)}	$_{\rm CC}$ – 0.2V or V _{IN} \leq 0.2V,		1	7	μA

Notes

- 3. V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 4. V_{IH}(max) = V_{CC} + 0.75V for pulse durations less than 20 ns.
 5. Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.
 6. Under DC conditions the device meets a V_{IL} of 0.8V (for V_{CC} range of 2.7V to 3.6V and 4.5V to 5.5V) and 0.6V (for V_{CC} range of 2.2V to 2.7V). However, in dynamic conditions Input LOW voltage applied to the device must not be higher than 0.6V and 0.4V for the above ranges. Refer to AN13470 for details.

Capacitance

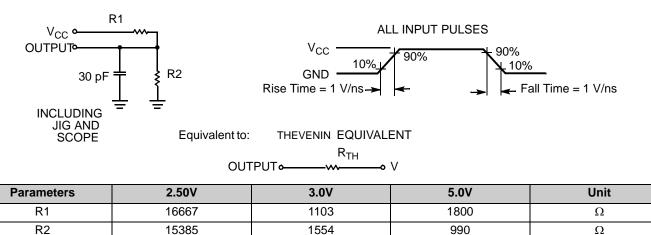
Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance

 R_{TH}

V_{TH}


Tested initially and after any design or process changes that may affect these parameters.

8000

1.20

Parameter	Description	Test Conditions	STSOP	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, two layer printed circuit board	49.02	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		14.07	°C/W

Figure 2. AC Test Loads and Waveforms

645

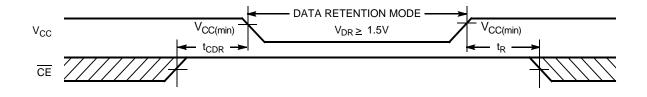
1.75

639

1.77

Ω

V



Data Retention Characteristics

Over the Operating Range

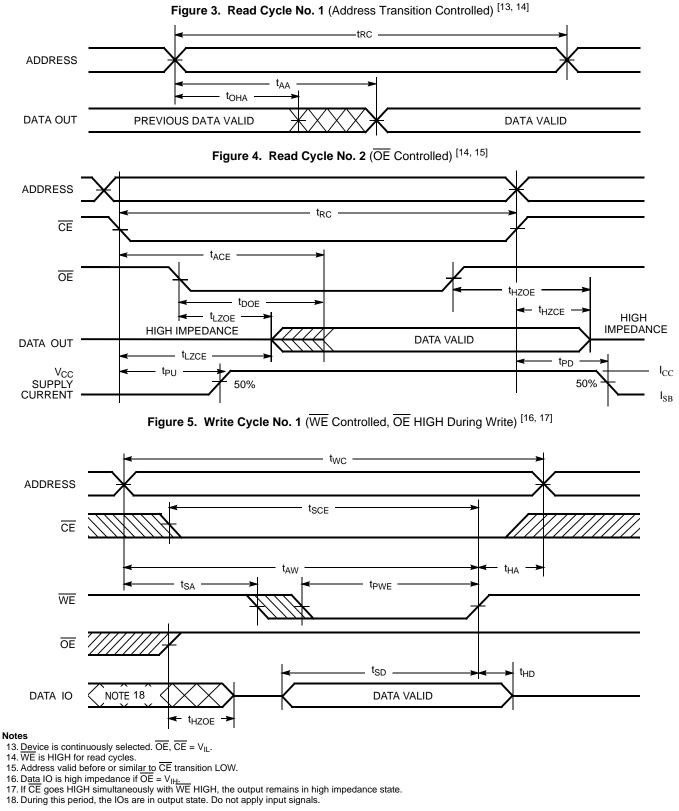
Parameter	Description	Conditions		Min	Typ ^[2]	Max	Unit
V _{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$\label{eq:cell} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \end{split}$	V _{CC} = 1.5V		1	7	μΑ
	Chip Deselect to Data Retention Time			0			ns
t _R ^[8]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

Notes
7. Tested initially and after any design or process changes that may affect these parameters.
8. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

Switching Characteristics

Over the Operating Range [9]


Demonster	Description	55	ns	1 he it
Parameter	Description	Min	Max	Unit
Read Cycle				
t _{RC}	Read Cycle Time	55		ns
t _{AA}	Address to Data Valid		55	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		55	ns
t _{DOE}	OE LOW to Data Valid		25	ns
t _{LZOE}	OE LOW to Low Z ^[10]	5		ns
t _{HZOE}	OE HIGH to High Z ^[10, 11]		20	ns
t _{LZCE}	CE LOW to Low Z ^[10]	10		ns
t _{HZCE}	CE HIGH to High Z ^[10, 11]		20	ns
t _{PU}	CE LOW to Power Up	0		ns
t _{PD}	CE HIGH to Power Up		55	ns
Write Cycle [12]				
t _{WC}	Write Cycle Time	55		ns
t _{SCE}	CE LOW to Write End	40		ns
t _{AW}	Address Setup to Write End	40		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Setup to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{SD}	Data Setup to Write End	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[10, 11]		20	ns
t _{LZWE}	WE HIGH to Low Z [10]	10		ns

Notes

Notes
9. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in AC Test Loads and Waveforms on page 4.
10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
11. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
12. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Switching Waveforms (continued)

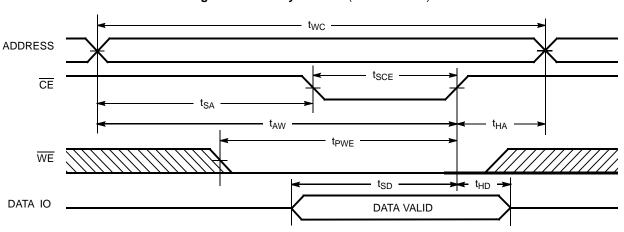
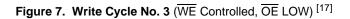
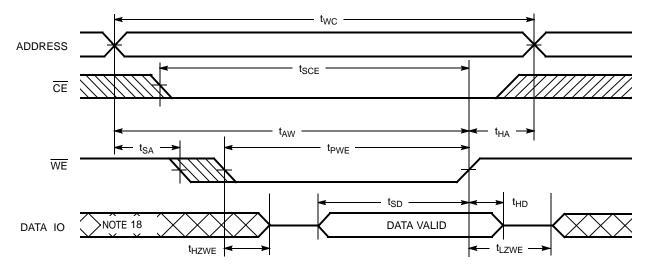
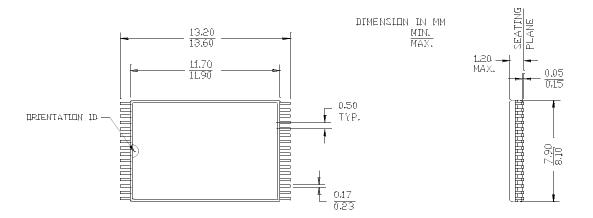
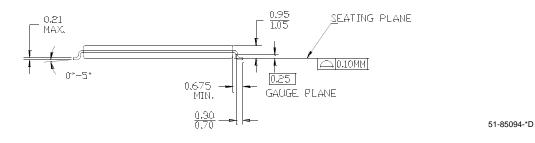




Figure 6. Write Cycle No. 2 (CE Controlled) [16, 17]

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	L X Data in		Data in	Write	Active (I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62148ESL-55ZAXI	51-85094	32-Pin STSOP (Pb-Free)	Industrial

Package Diagram

Document History Page

Document Title: CY62148ESL MoBL [®] 4-Mbit (512K x 8) Static RAM Document Number: 001-50045								
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change				
**	2612938	VKN/PYRS	01/21/09	New data sheet				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems agnities agnited in the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-50045 Rev. **

Revised January 21, 2009

Page 10 of 10

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.